

UNIVERSITY OF PLYMOUTH

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

G-DISTANCE ON THE COMPARISON OF MODEL AND HUMAN HETEROGENEITY

Andy J. Wills Lenard Dome @ajwills72

WHAT IS A MODEL?

A mathematically-specified theory that is implemented as a computable algorithm for the purpose of simulating some aspect of human, or animal, behaviour.

Wills & Pothos (2012)

IS THIS MODEL ANY GOOD?

Goodness of fit: Extent to which a model can accommodate alreadyobserved data pattern(s).

Model and human **heterogeneity**

MODEL ADEQUACY AS OVERLAPPING SETS

$$\alpha = \frac{|M \cap H|}{|H|} \qquad \qquad \beta = \frac{|M \cap H'|}{|H'|}$$

Accommodation

Excess flexibility

MODEL ADEQUACY AS OVERLAPPING SETS

G-DISTANCE

INVERSE BASE-RATE EFFECT

Training (Relative Frequencies)	Test
$AB \rightarrow 1 \ (x \ 3)$	А, В, С,
$AC \rightarrow 2 \ (x \ 1)$	AB, AC, BC, x 12

INVERSE BASE-RATE EFFECT

Training (Relative Frequencies)	Test
$AB \rightarrow 1 \ (\mathbf{x} \ 3)$	А, В, С,
$AC \rightarrow 2 \ (x \ 1)$	AB, AC, BC, x 12

	Ordinal Pattern	Frequency
$A \simeq B$	$B < \emptyset < BC \simeq C$	104
$A\simeq B$	$B < \emptyset < BC < C$	24
B < A	0 < BC < C	16
B < A	$1 < \emptyset < BC \simeq C$	16
B < A	$m \simeq \emptyset < BC < C$	14
B < A	$0 < \emptyset \simeq BC < C$	14

MODELS OF THE IBRE

- Attentional associative-learning models
- EXIT (Kruschke, 2001) "Market leader"
- NNRAS, NNCAG (Jones & Paskewitz, 2020) Simplified versions of EXIT
- Plain-associative model (known poor model)
- LMSNET (Gluck & Bower, 1988; see also Rescorla & Wagner, 1972).
- Dissimilarity-Exemplar models
- DGCM18 (O'Bryan et al., 2018)

SUMMARY

- g-distance is a formal measure of model adequacy, which combines:
- Accommodation
- Excess flexibility
- The inverse base-rate effect (IBRE) is a robust nonrational learning phenomenon.
- Applying g-distance to models of the IBRE
- The success of 'market leader' model EXIT may be due to its excess flexibility
- It's simpler derivative (NNRAS) and a notable alternative (DGCM18) generally outperformed EXIT

- At least in the current case, g-distance better captures model adequacy than the commonly-used Bayesian Information Criterion (BIC) metric. <u>Preprint</u> https://doi.org/10.31234/osf.io/ygmcj